Foreword, by Charles E. Rogers

One of the fundamental equations in the field of
rocketry is the equation for the thrust of an ideal rocket
motor. This equation can be used to predict the thrust of
solid rocket motors and liquid rocket engines as a function
of chamber pressure, ratio of specific heats for the flow
through the nozzle, nozzle throat area and expansion ratio,
and atmospheric pressure.
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Despite being based on an ideal perfect gas analysis, the
ideal rocket motor thrust equation is accurate to within 1-
6% for most rocket motors, and can be accurate to within 1-
3% when a non-ideal correction for nozzle divergence angle
is included. The fact that the thrust of a rocket motor in-
creases with altitude, and that maximum thrust is achieved
by using an optimum expansion ratio can both be derived
using this equation. All propellant performance analysis
programs, rocket engine analysis programs, and solid rocket

motor simulation programs use this equation in some form, -

making it part of the foundation of rocket performance
analysis.

The first individual to apply the theory of gas flow
through nozzles to rocket engines, the central theory for the
| derivation of the ideal rocket motor thrust equation, was
.| Hermann Oberth. His original derivation culminated in the
Oberth exhaust velocity equation, named in his honor.
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Oberth submitted his derivation of the Oberth exhaust
velocity equation as his doctoral thesis at Heidelburg
University, but it was rejected. At great personal expense
he published his thesis in 1923 as a pamphlet of less than
100 pages titled Die Rakete zu den Planetenraumen (The
Rocket into Interplanetary Space). In this document Oberth
proved theoretically that the thrust of a rocket increases
with altitude, and that a rocket produces maximum thrust in
a vacuum. Oberth cited as experimental evidence a re-
markable series of experiments-performed by Robert H.
Goddard in 1915-1916 that showed increased thrust and ef-
ficiency with altitude. Oberth’s theoretical analysis and
Goddard’s experiments proved that a rocket could produce
thrust in a vacuum. These results showed that the rocket
was a practical means of propulsion in space, making space-
flight possible.

In the author’s opinion one of the best technical articles
ever written covering the derivation of the ideal rocket
motor thrust equation was by Martin Summerfield and
published in 1959 in Volume 12 - Jet Propulsion Engines of the
Princeton High Speed Aerodynamics and Jet Propulsion series.
The full derivation of the ideal rocket motor thrust equa-
tion, specific impulse, characteristic. velocity, nozzle exit
pressure as a function of nozzle expansion ratio, non-ideal
corrections for nozzle divergence angle, flow separation in
overexpanded conical nozzles, all are covered in extensive

“detail in Summerfield’s technical article. After nearly 30

years the fundamental equations and the clarity of the
technical writing have withstood the test of time. This 12
volume series was published by the Princeton University
Press under contract to the United States Government.
Under that contract after ten years the material entered the

public domain, and the author and High Power Rocketry ate |

pleased to republish this material for a new generation of |
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SECTION G

THE LIQUID PROPELLANT
ROCKET ENGINE

MARTIN SUMMERFIELD

G,1. Introduction. The scientific development of the modern rocket
engine has been made possible to a great extent by the results of research
in the fields of chemical physics, high temperature combustion, high
intensity heat transfer, gas dynamics, and heat-resistant materials. Much
of this work has taken place in recent years and has not been incorpo-
rated heretofore in the standard textbook literature in a form suitable for
systematic study. For an up-to-date comprehensive treatment of the
liquid propellant rocket engine, therefore, it would have been necessary
to introduce in this section all of the new developments mentioned. How-
ever, in the planning of this series, many of these topics were placed in
other sections to allow a more logical arrangement of the entire subject
matter. Therefore, in this section, the pertinent results or conclusions
derived from these modern investigations are merely stated in their
simplest form, and the reader is directed by cross references to the other
volumes where the complete treatments can be found.

In rocketry, as in any field that has grown rapidly, the terminology
has not yet been fully standardized and accepted. Therefore it is appro-
priate to start with a few definitions.

Rocket propulsion is a system of propulsion that depends on forward
thrust created by rearward ejection of a fluid jet through a nozzle mounted
in the vehicle, with the special condition that the fluid in the jet originate
entirely from tanks within the vehicle. It is this special condition that
distinguishes the rocket from other classes of jet engines that ingest the
surrounding medium (air or water) to form the driving jet. Therefore the
rocket engine is able to function not only under the usual conditions of
flight through the atmosphere (or under water), but in the vacuum out-
gide the atmosphere.

A rocket propellant is the fluid substance that forms the driving jet,
although the term is used most frequently to refer to the driving fluid
in its chemical state before combustion. The term is used also to denote
one of the reactants in a multicomponent propellant system. A fuel is
any propellant that can burn in the presence of oxygen, and the term
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Www.rasaero.com



G - THE LIQUID PROPELLANT ROCKET ENGINE

includes not only hydrocarbons but other substances (e.g. ammonia,
powdered aluminum) as well. An oxzidizer is a propellant that can sup-
port the combustion of a fuel, and is applicable to substances that may
not contain oxygen (e.g. fluorine) as well as those that do. A bipropellant
system 1s one that consists of two reactants, usually a fuel and an oxidizer.
A monopropellant is a single substance that can be caused to react in the
combustion chamber to generate hot gas to form the driving jet. This
term applies strictly only to a single compound (e.g. ethylene oxide)
that undergoes a decomposition reaction, but it has been applied also
to a propellant mixture that is stored in a single propellant tank (e.g. a
mixture of methyl nitrate and methyl alcohol).

The rocket motor is usually understood to be the part of the engine
in which the propellants are burned and the jet is formed, while the term
rocket engine usually refers to the entire propulsion system, including
the tanks if they are constructed integrally with the engine. The term
thrust cylinder has been used in place of rocket motor in some writings,
but the latter term is historically the oldest and the most widely pre-
ferred. In the conventional solid propellant rocket, the engine and the
motor happen to be the same piece of apparatus because the propellant
is stored in the combustion chamber of the rocket motor; this is not so in
the liquid propellant rocket.

G,2. Performance Analysis of the Ideal Rocket Motor. The
performance analysis of a rocket motor comprises calculations of the
thrust F, the effective exhaust velocity ¢, the adiabatic combustion
temperature in the chamber T, the thrust coefficient C'z, the character-
istic velocity c*, and certain efficiencies n. Performance parameters
derived from ¢ are the specific impulse 7,, and the specific propellant
consumption w,,.

The thrust equation is the fundamental starting point. In general, the
thrust exerted on a duct of arbitrary shape can be calculated from the
momentum equation written in integrated form appropriate for one-
dimensional flow problems. (See I11,B.) Let 7, be the rate of mass flow
into the inlet, p; the static pressure at the inlet, V; the stream velocity
at the inlet, and A; the area of the inlet, and let the corresponding
quantities at the exit be indicated by the subscript ,. Then,

The stream thrust at the inlet = (mV; + pi4,)
The stream thrust at the exit = (m,V, + p,4,)
The total force on the external duct surface = F + p,(4, — A))
F + pa(de — Ai)) = (1V, + peds)
= (Maw; + pids)
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G,2 + PERFORMANCE ANALYSIS

The external force on the duct is expressed here as if the pressure
on the external surface were identical with the ambient pressure pe
of the atmosphere, although in actual flight this is not so. Therefore,
for a duet in flight, this equation implies a certain arbitrary separation
between the thrust /' and the aerodynamic drag D. Separation in this
manner is justified by its convenience, because the thrust measured in a
ground test of the propulsion system is closely equal to the thrust F
thus calculated.

In the particular case of a rocket, 7; and A; may be set equal to zero.

Then,
P =nVe+ (pe — pu)4, (2-1)

With reasonably well-designed exhaust nozzles, the exit pressure p.
is nearly or exactly equal to the ambient pressure p,, so that the second
term is in the nature of a small correction to the thrust. This makes it
convenient to define an effective exhaust velocily ¢ such that

F = me (2-2)

C =

Vo 4 (pd =Y. 'pw)Aa (2_3)
m

Clearly, ¢ equals V, if the nozzle is designed properly, that is, if the
pe equals p,. For any given values of chamber pressure p, and of p,
and 7, both F' and ¢ reach their maximum values when the exit area 4,
of the nozzle is chosen to produce a static pressure p, at the exit exactly
equal to p.. (This will be proved later.) The exit velocity and the correc-
tion term (p. — Pw.)A./m both vary strongly with A4,, but in opposite
directions so that the sum is quite insensitive to 4,, that is, the maximum
is very flat. As a result, the effective exhaust velocity measured by the
ratio of F to 7 can be taken to be the value of (V,),,, even if the actual
nozzle used in the test is somewhat off-design. Herein lies the practical
significance of the concept of the effective exhaust velocity (see Fig. G,2a.)

The specific propellant consumption w,,, defined as the weight rate
of consumption of propellant w per unit thrust, is another useful index
of rocket engine performance. Let go denote the standard acceleration
due to gravity.

W = 5 = o = & (2-4)

The specific impulse I,, (called specific thrust in some writings) is
defined as the propulsive impulse delivered by the engine per unit weight
of propellant.

N S

il fadrrmadn (2-5)

A figure of merit that is sometimes quoted is the impulse-weight ratio,
I/W, of aloaded rocket propulsion system or of a loaded rocket vehicle.
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If the firing program calls for constant pressure and hence constant
specific impulse,

I

"'W = Inpv (2'6)
where v is the propellant loading fraction, that is, the ratio of the initial
mags of propellant when the rocket is fully loaded to the gross mass
of the loaded rocket. Obviously, » approaches unity as the structural
effectiveness is improved. Therefore, I/W measures both the perform-
ance of the engine and the effectiveness of the structure of the rocket.
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Fig. G,2a. Variation of effective exhaust velocity with exit area.

The matter of units of specific impulse deserves comment. The
definition involves the mass rate of flow of propellant expressed in weight
units, so that in the fps system I,, should be 1b sec/lb. It is common
practice to denote this ratio simply as sec, canceling the Ib in numerator
and denominator, disregarding the fact that one lb refers to a force
and the other to a mass. That this is an error becomes apparent when it is
realized that the specific impulse has the dimensions of a velocity.

In order to develop several additional performance parameters, it is
necessary to describe in detail the thermodynamic and gas dynamic
processes in the rocket motor. As a starting point, it is a great simplifica-
tion to deal with the so-called ideal rocket motor. From a practical stand-
point, the ideal rocket motor is a useful concept because it leads to
simple theoretical formulas for F, ¢, T, Cr, and ¢*, which otherwise
would have to be presented in tables or in graphs.

The ideal rocket motor analysis rests on the following simplifications:
(1) the propellant gas obeys the perfect gas law; (2) its specific heat is
constant, independent of temperature; (3) the flow is parallel to the

( 442 )



G,2 * PERFORMANCE ANALYSIS

axis of the mofor and uniform in every plane normal to the axis, thus
constituting a one-dimensional problem; (4) there is no frictional dissipa-
tion in the chamber or nozzle; (5) there is no heat transfer to the motor
walls; (6) the flow velocity in the chamber before the nozzle entrance is
zero; (7) combustion or heat addition is completed in the chamber at
constant pressure and does not occur in the nozzle; and (8) the process is
steady in time.

The thermodynamic process is indicated in Fig. G,2b, both in the
p, V diagram and in the h, s diagram. Combustion at constant pressure
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Fig. G,2b. Ideal thermodynamic processes in the combustion
chamber and nozzle of a rocket motor.

moves the state point from i to ¢. The highest temperature occurs at c.
Then, since the frictionless and adiabatic conditions assumed for the
ideal rocket motor imply an isentropic expansion in the nozzle (see III,B
for proof; also I,A), the state point moves along the constant entropy
line from ¢ to e during the expansion process. As indicated in the motor
sketch of Fig. G,2b, the subsecripts i, ¢, th, and e employed in the following
analysis refer respectively to the unburned state at the injector, the all-
burned state in the chamber just before expansion, the state at the throat
of the de Laval nozzle, and the state at the exit of the nozzle.

The combustion temperature (or adiabatic flame temperature) T
is determined by the heat of combustion at constant pressure per unit
mass Ah..

Ahy = cp(To — T)) (2-7)

At any station in the nozzle, the entropy, pressure, temperature,
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velocity, and Mach number are given by the following relations (I1I,B):

=

R ¥

p=egmli G-G=g &=-—"7g (2-8)
_ ) T_ pI;.l. /
8 8 _f[_‘.,_ (ﬁ) v (2-9)
—1
1772 — -y =_2 BT, (25
et = 2 B (2]
A _1
Anh_M piefe 1
2

Since the over-all pressure ratio p,/p. is always sufficiently large in
rockets to establish sonic flow at the throat, then

¥
Mu, = % = 1; Vgh = ("Y-E),—Irarl T;h) (2—11)
Po _ (2 V5. Tw_ 2 ;
m_Q+J?’ﬂ_7+l (&19)

The specific heat ratios of typical rocket jet gases range between
1.1 and 1.3. The first figure corresponds to mixtures at very high tempera-
tures with large concentrations of water vapor and large effective specific
heats due to strong dissociation; the latter figure applies to moderate
temperature gases with moderate concentrations of H,0 and CO..
With ¥ = 1.2, it can be seen that the drop in pressure from the chamber
to the throat is nearly half the chamber pressure, while the drop in
temperature is only about one tenth the chamber temperature.

The mass flow through the nozzle can be expressed in terms of the flow
conditions at any station. Let A be the cross-sectional area at any station:

) _ 2y m (p\ [ {2\
m = pVA = pd {'y — (pu)'f 1 = ¥ (2-13)
A plot of mass flow per unit area m/A against static pressure ratio

p/Pe, shown in Fig. G,2¢, exhibits a maximum at the throat of the de Laval
nozzle, just as expected.

" 2\t o |?
rb(iE e

By equating the two expressions, Eq. 2-13 and 2-14, for v, anexpres-
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sion for 4/A, is obtained.

+
O ) ) i
S fe st Y/ (2-15)
i
Pe o
By inserting A4, and p, for A and p in Eq. 2-15, the nozzle area ratio

¢ (= 4,/4u) can be expressed as a function of Po/Pe. This relation is
plotted in Fig. G,2d for several values of «.
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Fig. G,2¢c. Variation of mass flow per unit area 1 /A with pressure ratio 2/ De.

The maximum exit velocity (Ve)m, obtained by setting p,/p, in
Ea. 2-10 equal to zero, is

2y RT,

(Vo) max = P (2-16)

It is interesting that the maximum exit velocity, obtained by expan-
sion to zero pressure, is greater than the root-mean-square molecular
velocity in the chamber by the factor [2v/3(y — 1)}, or about 2 for
v = 1.2. This result follows directly, of course, from molecular energy
considerations.
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Fig. G,2d. Variation of nozzle area ratio with pressure ratio. After Button,
G.P., Rocket Propulsion Elements, Wiley, 1956, by permission.
The thrust formula (Eq. 2-1) can now be expressed in terms of the
pressures by substituting Eq. 2-10 for V, and Eq. 2-14 for 7.
_ 2y? 2 Lti De T__I:I '
F = pAun {7—_—'1' ('Y ¥ 1)7 1 E R + (Pe peo)As (2-17)
From this formula, it is clear that the thrust does not depend at all
on the combustion temperature 7', but depends mainly on the dimensions
of the nozzle 4, and A, and on the chamber pressure p,.
An important performance parameter, the rocket thrust coefficient
Cr, can now be deduced. The defining equation is
F
UF o pnAth
From Eq. 2-17 Cp can be evaluated:

R e
CF_{T—l(*Y-H) ik (po g g 19
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Since p./p. is a function of e according to Eq. 2-15, C'r depends only
on the three independent variables v, p./Pw, and e. Graphs of this func-
tion are presented in Fig. G,2e and G,2f for v = 1.2 and v = 1.3,
respectively.

There are several features of these curves that deserve attention.
First, each curve shows a maximum value of Cp at a certain area ratio
which may, for this purpose, be called e, It can be shown analytically,
by differentiating Eq. 2-19 and setting the derivative equal to zero, that
the peak value occurs for a value of e such that p, = p., that is, for a
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Fig. G,2e. Variation of rocket thrust coefficient with nozzle area ratio and
pressure ratio po/p. for v = 1.2. After Button, G.P., op. cit.

8]

properly expanded nozzle. The area ratio e for proper expansion can be
determined from the peak of the appropriate curve in Fig. G,2e or G,2f,
or, more accurately, from Fig. G,2d. A nozzle having an area ratio less
than e, is said to be underexpanded, and one having an area ratio more
than e, is overezpanded. Clearly, nozzles that are either overexpanded or
underexpanded produce less thrust than a properly expanded nozzle. This
conclugion can be proved in another way, by considering the distribution
of pressure on the inner and outer surfaces of the rocket motor, as shown
in Fig. G,2g. Downstream of the section indicated as e, the internal
pressure is less than the external pressure, so that this portion of the cone
acts to produce a force opposed to the thrust of the rocket motor as a
whole. Therefore it ‘is better to dispense with it and to terminate the
nozzle at e,,. Consequently the highest thrust is produced with a prop-
erly expanded nozzle.
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Examination of the pressure distribution pictured in Fig. G,2f shows
that Cr must be somewhat greater than unity, except for the unusual case
of low chamber pressure (p./po=21) and for possibly greatly overex-
panded nozzles, Viewed in the simplest way, the rocket motor is a pres-
surized vessel with a hole of area A, in the aft wall, and so it would be

2.0 -}'.7_56
\ue:f- S,
18 N‘\ax\m‘-‘m e 7J T000
Llj pcI?m — | pc/p __’r\%
= 16 = T 200
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ﬁ r—‘\ 0
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0.6 —
1 2 4 6 8 10 20 40 60 80100

Area ratio € = A/ Awn

Fig. ,2f. Variation of rocket thrust coefficient with nozzle area ratio and
pressure ratio p./p. for v = 1.3. After Sutton, G.P., op. cil.
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Fig. G,2g. Optimization of nozzle area ratios.

acted upon by an unbalanced force (p, — po)4.. To this must be added
the additional unbalance due to the pressure reduction in the entrance
cone of the nozzle. Then, if po < p,, the ratio F//p, A, must be somewhat
larger than 1.

The maximum values of Cr on the families of curves in Fig. G,2e
and G,2f can be connected by a smooth curve obtained by setting p, = p.
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in Eq. 2-19.

7 (_2 4 B\ |
[ (- @] o

The dependence on (p./p.) can be replaced by dependence on ey
through the relation (Eq. 2-15). The curve (C#)ms V8. €op itself reaches an
ultimate value for infinite expansion. Thus, if (p./p.) is set equal to

zero in Eq. 2-20,
; 22 2 )vt: L] i
(C/l")ult - [7 = 1 ('Y _|__ 1 e :l ( = ]-)

For example, (Cp)y, = 2.246 for y = 1.2

Inspection of Fig. G,2e and G,2f discloses that, for a prescribed
nozzle area ratio e, the thrust coefficient increases monotonically as
Ps/Pe increases. This becomes clear when Eq. 2-19 is written in terms of
the thrust coefficient for a given nozzle when it is operating in a vacuum:

Cr = (Cr)ve — ¢ ?;-)B (2-22)
Thus, for given e and p,, the increase in thrust with increasing p./pe.
stems entirely from the reduction of the pressure acting on the external
surfaces of the rocket motor.

It is significant that Cp is completely independent of combustion
temperature T, and of molecular weight 91t. Consequently, as a figure of
merit, it is insensitive to the efficiency of combustion, but it is sensitive
to the quality of the exhaust nozzle. In practice, the test engineer com-
pares the measured Cr, computed from p, Au, and F by means of
Eq. 2-18,'with the theoretical Cr computed from Eq. 2-19 to determine
whether the nozzle is functioning properly, and in this way he can localize
to some extent the cause of an unexpected defect in specific impulse. The
other possible area for loss is in the combustion process. To detect com-
bustion inefficiency, the performance parameter ¢* is useful.

The characteristic velocity ¢* is defined as follows:

o 'paA:.h b |
o = Desu (2-23)

Tt follows immediately from Eq. 2-2 and 2-18 that

¢ = Crc* (2-23a)
A theoretical expression for ¢* is obtainable from Eq. 2-14.
1{y 4+ 1\: RT. T}
® | = -1 % e
- [l

From this formula it appears that ¢* depends mainly on conditions
in the combustion chamber, that is, on flame temperature and combustion

{ 449 )



G - THE LIQUID PROPELLANT ROCKET ENGINE

product, composition. Consequently, just as Cp is used as an index of the
quality of the exhaust nozzle, so ¢* is used in practice as an index of the
efficiency of combustion. The test engineer determines ¢* from measured
values of p,, Aw, m, and compares it with the theoretical value (Eq. 2-24).
In this way, a defect in specific impulse can be traced to a possible loss
in the combustion process. Although the performance of a rocket motor is
adequately described by the exhaust velocity ¢, which requires only the
measurement of F' and 7, it is the usual practice to measure at the same
time p, and Ay, in order to compute C'r and c* for diagnostic purposes.
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c*1500 >
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Fig. G,2h. Variation of characteristic velocity ¢* with /7, /91.

(Careful consideration of the flow process reveals that there exists some
slight cross-dependence of Cp and ¢*, that is, the former is slightly
sensitive to the combustion process and the latter is somewhat affected
by the flow conditions in the nozzle, but this is usually ignored.)

Curves of ¢* vs. (T./9M)* for v = 1.2 and y = 1.3 are plotted in
Fig. G,2h. It is significant that ¢*, and therefore the specific impulse,
depends as much on molecular weight 91 as on flame temperature. Thus,
it is just as important for the product gas to have a low mean molecular
weight as a high temperature. This point will arise later when actual
propellants are considered. It will be pointed out then that the optimum
fuel-oxidizer mixture ratio is not necessarily the one that produces the
highest flame temperature, and that a particular propellant combination
may be very hot but no better than another much cooler one from the
standpoint of specific impulse,
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The magnitude of ¢* is of interest. Because of its dependence on
(RT./9M)}, it can be compared directly with the velocity at the nozzle
throat, Thus, for y = 1.2, ¢* = 1.5Vy. In general, for a properly designed
nozzle, Vi, < ¢* < V,, 8o that ¢* equals the gag velocity at some station
in the divergent part of the exhaust nozzle.

The efficiency of the rocket engine can be discussed in terms of the
concepts of the ideal rocket motor. Five efficiencies deserve discussion
here: combustion efficiency, expansion or “cycle’” efficiency, nozzle
efficiency, thermal efliciency, and total efficiency. In addition, the
attempts to define a so-called propulsive efficiency will be examined.

The combustion effictency n,is defined ag the ratio of the actual enthalpy
released by combustion to the ideal enthalpy that would be released
if the reaction were to go to completion.

o = (Ah‘" T h‘l)a.umnl -, (To)a“uni
' (Ah" & hi)ldnnl (Tﬂ)idonl

(2-25)

The ideal expansion or cycle efficiency n, expresses the fraction of the
enthalpy available in the combustion chamber that can ideally be con-
verted to kinetic energy in the exhaust jet. Let h; represent the enthalpy
of the product gas at the injection temperature with reference to 0°K.

_ @V _ @GV uen
" A+ b oT, (2-26)

y=1
mo=1- (%") v (2-27)

(]

From Eq. 2-10,

The nozzle efficiency u. is defined as the ratio of the actual kinetic
energy in the exhaust jet to that which could be produced ideally at the
specified pressure ratio. (Compare with diffuser efficiency in ramijets,
Sec. E.)

. (%'Vg)wwal _ (To o Te)nmml
T T D (T Toltae )

The thermal efficiency nw is the ratio of actual kinetic energy in the
exhaust jet to the total enthalpy that could ideally be produced by the
combustion reaction.

P ('é' Vg)nutunl
"™ B+ i i

Conversion losses in the combustion process and in the expansion
process, and the enthalpy discarded in the hot exhaust jet, are all repre-
sented in the thermal efficiency.

2
Nn = Ny = (—(T%if—:f (2-30)
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The four efficiencies mentioned so far refer to the rocket motor
simply as a heat engine and do not involve the energy quantities con-
nected with flight. When flight is considered, it is possible to define an
over-all or a total efficiency no as the ratio of propulsive power (output) to
the rate of consumption of energy in the rocket motor (input). The output
is simply V.V, per unit mags flow of propellant, where V., is the flight
speed, The input is the sum of (Ah, + h;) plus the kinetic energy +V2
of the propellant. The latter quantity results from the recognition that a
quantity of propellant possesses more total energy when it is in motion
than when at rest.

_ VeV
L (Ahs + M)igem + 3VE

VI (Ve + V2

The maximum value of 49 is v/7w, and this value is reached when the
flight velocity equals the maximum theoretical exhaust velocity. (This
result has led to statements in the early literature that a rocket’s flight
speed could not exceed the maximum theoretical exhaust velocity.
Clearly, this conclusion is not justified.)

There have been several attempts in the past to define a suitable
“propulsive efficiency’” by analogy with the corresponding case of a
propeller-driven airplane, but these attempts have always failed because
of the lack of a logical definition of mechanical input. If the analogy is to
be carried through, the so-called propulsive efficiency will have to satisfy
three requirements: (1) it should be a ratio of a mechanical output to a
mechanical input; (2) the product of the propulsive efficiency and the
thermal efficiency n should be equal to the total efficiency no; and
(3) it must under no flight condition exceed unity.

The definition of propulsive efficiency that has been most prominent
in the literature is

_output output _ YoV, 2V.V,

T = Tnput  output + 1088 VaVe + 2(Ve — Va)? (V3 + )

The denominator is supposed to represent the sum of the propulsive
work and the absolute kinetic energy of the jet (a loss). The present
author objects to this propulsive efficiency on the grounds that it offers
no clear definition of mechanical input and that, even if this particular
definition were allowed, it fails to meet the requirement that ,gu = 9.

As a conclusion to this discussion of efficiency, it may be remarked
that the concept of efficiency has not been at all useful in the field of
rocket, engines. Rockets are always compared on the basis of I,, or c¢*
values, or on specific propellant consumption, and rarely is efficiency

1 Editor’s note: The author would find the same difficulty with any engine when-
ever the kinetic energy of the fuel is included.
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